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Abstract

We show that, in the context of Moore’s Law, overall productivity

can be increased for large enough computations by ‘slacking’ or waiting

for some period of time before purchasing a computer and beginning the

calculation.

According to Moore’s Law, the computational power available at a particular
price doubles every 18 months. Therefore it is conceivable that for sufficiently
large numerical calculations and fixed budgets, computing power will improve
quickly enough that the calculation will finish faster if we wait until the available
computing power is sufficiently better and start the calculation then.

Figure 1:

This is illustrated in the above plot. Work is measured in units of whatever a
current machine can accomplish in one month and time is measured in months.

1This paper took 2 days to write
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The red line denotes the amount of work completed if you start calculating
now. However, according to Moore’s law the speed of computation, R, grows as
Rt = R02

t/18mo. In our units R0 = 1. If you wait some amount of time, then
buy a new computer and begin the computation, Moore’s law ensures that the
new computer will be faster, and you will get a steeper performance curve. The
blue lines illustrate the performance you will get if you wait five, ten, or more
months. This begins to pay off if the calculation is large enough. For example,
by looking at the green line we see that waiting for 25 months pays off for
any calculation larger than 40 work units; you could start a computation now,
calculate for 40 months, and get a certain amount of work done. Alternately,
you could go to the beach for 2 years, then come back and buy a new computer
and compute for a year, and get the same amount of work done.

Specifically, let N be the amount of work involved in the calculation, which
in our notation is the number of months the calculation would take with current
hardware, R1 be the rate of operations at some future time, and t1 = N/R1 be
the time the calculation takes at that future time. If we wait a “slack time” s,
then begin calculating with the newer faster computer we will finish at

tfinish = t1 + s (1)

ie. the total time it takes is the time of the computation in the future plus how
long we slack. Finally, if all the times are measured in months, then Moore’s
Law tells us that the rate increases exponentially:

R1 = 2s/18. (2)

We now calculate how long we can slack and still get the same amount done
as if we had started immediately. N is the time it would take for the calculation
to complete if started now, so from equations 1 and 2 we have

tfinish = N = s + t1 = s + N(2−s/18mo) (3)

N = 2s/18(N − s)

N(2s/18
− 1) = s(2s/18)

N =
s(2s/18)

2s/18
− 1

N =
s

1 − 2−s/18
(4)

This shows the relationship between the total work and slack. Note from
looking at figure 1 that this is also the largest amount of slacking that can be
done and still get the work done in N months.

Note that the size of the calculation does not vanish as s → 0, ie. there is a
minimum calculation for which it is ever worth it to slack. This is reassuring,
since otherwise it would always be worth it to wait and we would never get
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anything done. t0(s) is undefined at s = 0, but taking the limit using L’Hôpital’s
rule,

lim
s→0

t0 =
1

( ln 2

18
)2−s/18

=
18

ln 2
= tc ≈ 26.0 (5)

Therefore, any calculation that currently takes less than 26 months will finish
earliest if started immediately. We define this to be the critical timescale tc
which is the e-folding time of Moore’s law.

If we define the productivity as the work divided by time, we can see how
much our productivity improves as a result of our slacking. For a calculation of
a given size, we define the productivity enhancement factor P to be the ratio
of the time it takes to finish the job now to the time it would take to finish the
job after slacking for a time s.

P =
N

tfinish
=

N

s + N(2−s/18)

P =
[ s

N
+ 2−s/18

]

−1

(6)

The surface of the productivity enhancement in the N -s plane is shown below:

Figure 2:
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Even better, you will notice in figure 1 that the dark blue line (denoting
slacking for ten months) passes the 40 work unit mark 5 months ahead of the
red line. This suggests that by fine tuning your slacktitude you can actually
accomplish more than either the lazy bum at the beach for two years or the
hard working sucker who got started immediately. Indeed with a little bit of
algebra we convince ourselves that there exists an optimal slack time s⋆.
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We start by noting that the time before finishing a job tfinish, as given in
equation 3, goes through a minimum at s = s⋆. We set the derivative of tfinish

with respect to slack equal to zero and solve for s⋆.

s⋆ =
18

ln 2
ln

(

ln 2

18
N

)

= tc ln

(

N

tc

)

(7)

Figure 3:

This means that if we want to slack for a year, we should choose a task that
would normally take 41.2 months to complete at current processor speeds. After
our optimal year of goofing around we buy a new computer, put our noses to the
grindstone, and finish the calculation tc months later, having saved ourselves
3.25 months worth of total time (plus having been able to slack for a year and
honestly call it productive).

The time to optimally finish the task is simply given by substituting equation
7 into equation 3:

t⋆ = s⋆ +N(2−s⋆/18) = tc [1 + ln(N/tc)] (8)

The conclusion that is drawn from this is that simulations done with a tc
(26 month) runtime on the best machine that can be purchased for a given
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Figure 4:

cost when the calculation begins are indeed optimal in the sense of utilization
of ever improving computer resources. They are the largest calculations that
should be done with the present resources. The optimal time to begin any more
arduous computation is in the future (after an optimal amount of slack time).
Furthermore any more trivial calculation should have been started in the past
because calculations smaller than tc months runtime complete in the order they
are undertaken. 2

This suggests that for any given calculation there is a best time to start, and
that a valid strategy would be to always attempt problems that optimally utilize
the resources. Obviously the effect of Moore’s law is that that the optimal prob-
lem scales as the rate of computation. Our calculations place a normalization
on this scale and suggest that you will get the best possible performance if you
choose to attack problems that will take tc months to run on your computer
when you get around to starting the computation.
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2You may notice that this regime corresponds to a negative s⋆ parameter, however we

choose to neglect this notion since it requires postulating the possibility of anti-slack.
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