
Window System Design:
If I had it to do over again in 2002.

James Gosling
December 9, 2002

In the deep dark past I have been involved in building window
systems. I did the original design and implementation of both the
Andrew and NeWS window systems. Both of which predated
X11. They shared with X11 the architectural feature of being
networked: clients sent messages to the server over TCP
connections. I occasionally get asked “if you had to do it over
again, what would you do? Would you do the same thing”. The
answer is a strong no. It’s now 20 years later, and the
technological landscape is totally different. So here is what I
would do. But first…
The term “window system” is somewhat loose. It generally refers
to the mechanism by which applications share access to the
screen(s), keyboard and mouse. Beyond this it generally contains
facilities for inter-application messages such as support for cut-
and-paste, and drag-and-drop. It also often contains support for the
decorations surrounding windows that provide the user interface
for resizing, opening and closing windows; although in some
systems this has been left up to the application. Sometimes the
window system provides higher level abstractions like menus.
When a system is designed, there are always tradeoffs made that
reflect the technology of the day. In the case of Andrew and
NeWS, these tradeoffs were based on the state of the art 15 to 20
years ago (this probably applies to X11 too, but I wasn’t involved
in the design analysis behind it). There were a number of things
that were very different between then and now.

1) The most significant is the relative performance of graphics
rendering and network communication. Back then,
rendering was relatively slow. The overhead of network
communication was significantly overshadowed by the
overhead of rendering.

2) Back then, there were no shared libraries. This seems odd,
looked back at from today, but back then no version of
Unix had the ability to have a library like libc or OpenGL
that was shared between processes. All applications had to
be “statically linked”. There was a primitive segment

Background

History

sharing facility that allowed one segment per process to be
shared, that was at the beginning of the address space; but it
wasn’t powerful enough for this purpose.

3) Putting large things, like windowing libraries, into the
kernel is generally a bad idea. It has a significant negative
impact on the reliability and testability of the system.

4) When hardware acceleration was available, it generally had
no interlocking mechanisms for arbitrating amongst
independent threads that were trying to use it. This
generally meant that either the accelerator was permanently
allocated to a thread (very common, since acceleration was
normally 3D hardware used exclusively for CAD), or there
was an software interlock mechanism that added some cost
to each operation.

So, given these, where do you put all of the code that is involved in
the window system – including the graphics rendering library?
Remember that rendering libraries tended to be large, since
hardware acceleration was almost non-existent.
They couldn’t be in each user process, since without being shared,
they would take up an unacceptable amount of RAM. So the only
way to get one copy of the code, and have it outside of the kernel,
was to have it in one process, and to have applications
communicate with this “window server”.
But today, while putting large amounts of code into the kernel is
still a bad idea, rendering performance has improved dramatically,
and most operating systems have shared libraries. The increase in
rendering performance has outstripped Moore’s law, which in turn
has outstripped the increase in generally available bandwidth,
making the overhead of shipping requests through the network an
unacceptable burden.
High performance 3D rendering hardware has become so common
that it is actually difficult to buy a computer that doesn’t have any.
And an important feature of most accelerators is that they have
facilities to efficiently handle multithreaded access. It has become
a standard part of a computer’s architecture, alongside integer
arithmetic, floating point arithmetic, and networking.
The level of aspiration of applications has increased dramatically.
The 3D hardware is there because it is used. Even old-school
applications, like word processors, that one would think of as just
needing simple 2D graphics are using acceleration for such things
as image scaling.

What’s different

It’s been interesting to watch the evolution in the way applications
use X11. It has become standard to sidestep the servers rendering
and use the direct screen access extensions and libraries like libart.

1) Acceleration is normal, not rare.
2) Shared libraries are everywhere.
3) The code path from the application to the accelerator needs

to be as short as possible.
Given these, the basic outline of the design falls out fairly
naturally. I would make the “window system” so minimal that it is
almost non-existent. Each graphical application gets direct access
to the hardware, and a window is nothing more than a clipping list
and an (x,y) translation. I would build a “device driver” that did
nothing more than manage the clipping lists and hand out graphic
device ports. This might actually be best done at user level, rather
than a device driver, using shared memory and semaphores.
There are a variety of “hairy bits” that make this more
complicated:
It doesn’t just maintain clipping lists. It maintains the “true shape”
of each window, and a stacking order. The windows clip is
derived from these by subtracting from the clip for a window the
shapes of all of those above it. Whenever the shape or stacking
order of a window is changed, clip lists get updated. If an
application has its clip list changed I would notify it via a message
on the mouse/keyboard event queue. Until the application
acknowledges the clip change, the old window shape has to be
considered as being continuously damaged by the application.
It has to handle resource allocation within the accelerator,
including texture space and rendering ports.
Some other device drivers would be affected:

1) The mouse driver would need to have an association
between clipping lists and processes to deliver events to. It
is the natural place for one small piece of UI policy: that
once a mouse button goes down, all following events get
delivered to the same process until all buttons are up.

2) The keyboard driver would need to have a notion of the
“current focus” and send keystrokes only to that process
(==file descriptor, from the drivers point of view). And an
IOCTL to request the focus, and some pseudo keystroke
events to indicate focus gained and lost.

3) It is quite likely that the keyboard and mouse driver should
be merged at the higher levels so that applications only

Principles for a
New Design

The design

have one file to read events from. This also straightens out
temporal ordering hazards between the mouse and the
keyboard.

Almost everything else would be done at user level, in the user
process: rendering, window borders, and the hard parts of
cut/paste/drag/drop. It also needs to have its own mouse/keyboard
distribution since the kernel only does coarse grained distribution
based on window shape. The kernel knows nothing of the details
within a window.
I wouldn’t use signals for anything. Everything would go through
a unified message queue (along with mouse and keyboard events).

This allows a wide range of rendering libraries to be supported.
The window system knows nothing of rendering and imposes no
preconceived notions on it. I wouldn’t expect applications to deal
directly with rendering, rather I’d expect a small number of
rendering libraries to be written. The three most likely candidates
are OpenGL, something that does roughly the PostScript rendering
model, and something that does roughly the X11 rendering model
(it may also have an Xlib compatible API).
Do them in the application library!
These days it’s becoming required to implement double buffering.
For anyone who’s ever used OSX, the experience is totally
addicting and quickly become a non-negotiable feature (along with
anti-aliased fonts!). One of the nice things about this design is that
it allows for either use of double-buffering hardware or OSX-like
rendering offscreen and compositing into the framebuffer. It’s up
to the rendering library. This does introduce a tricky bit of
coordination that will have to be worked out: how to manage the
compositing & buffer flipping, particularly in the face of video
sync issues.
There are two cases: for local X11 apps, the best solution is an
Xlib compliant rendering library that does everything locally. I
would not push the compatibility library too far: in particular, all
the X facilities for supporting window managers I would just flush.
The remote case is somewhat harder. One could just port an X11
server to this environment, much as it has been ported to OSX.
This would be pretty heavyweight, although quick and easy to put
together. I think that a more viable solution in the long run would
be to replace the X protocol with a very simple pixel copying
protocol that uses the user-level rendering libraries in the
application to render to a local image buffer, then copies the pixels
over the net in something that looks vaguely like a video stream.

Implications

Window borders
Painting policy
(double buffering)

X11 compatibility

There are a variety of compression hacks that make this
surprisingly efficient – this is essentially what the SunRay product
does. Some analysis has been done that shows that this uses
essentially the same bandwidth as the X protocol, if done well. It
has the advantages of being both a lighter weight solution and
allowing rendering APIs other than Xlib to be used remotely.
Would be a system that is both lightweight and fast. Everything
could move at the speed of a finely tuned video game. Advances
in rendering pipelines and library design would be easy to
accommodate. This window system design isn’t particularly
radical: it’s more just pointing out that this is the way that X is
going already, given the increasing predominance of application-
side rendering libraries. Once you accept that fact and admit that
it’s actually the right way to go, the design falls out, simply by
stripping away legacy stuff that isn’t needed any more.

The result

